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Recall: species of structures

category B objects: finite sets, morphisms: bijections

Definition
A species of structure is a functor F : B → Set:
▶ Given a finite set of labels A ∈ B, an element s ∈ F (A) is called an

F-structure on A

▶ Given a bijection σ : A ∼−→ B ∈ B, the bijection F (σ) : FA ∼−→ FB is
called the transport of F -structures along σ

Disclaimer: in this talk, I do not restrict to species B → FinSet whose set
of structures is finite.

Joyal, “Une théorie combinatoire des séries formelles”, 1981
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Equivalent notion: symmetric sequences

category P objects: natural numbers, morphisms: permutations

A symmetric sequence is a functor F : P → Set or equivalently
▶ a set F (n) of F -structures for every n ∈ N

a general element
s ∈ F (n) s

F
1 n. . .

▶ a group action Sn × F (n) → F (n) for every n ∈ N

F (n)

7→s

1 n

F

. . .

F (σ)
F (n)

σ · s
F

1 n. . .

Kelly, “On the operads of J.P. May”, 2005

Joyal, “Foncteurs analytiques et espèces de structures”, 2006
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Colored symmetric sequences
For sets A, B, an (A, B)-colored symmetric sequence consists of:
▶ for every pair (⟨a1, . . . , an⟩, b) of a list of input colors a1, . . . , an ∈ A

and an output color b ∈ B, a set F (⟨a1, . . . , an⟩, b)

a general element
s ∈ F (⟨a1, . . . , an⟩, b)

b

s
F

a1 an. . .

▶ for every permutation σ ∈ Sn, a bijection satisfying group action
axioms

F (⟨a1, . . . , an⟩, b)

F

b

s

a1 an. . .

F (σ, b)

7→

F (⟨aσ1, . . . , aσn⟩, b)

b

σ · s
F

aσ1 aσn. . .

Méndez, “Colored Species, c-Monoids, and Plethysm, I”, 1993
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Colored symmetric sequences
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Generalized species of structure

Generalization from a set of colors to a category of colors

For categories A, B, an (A, B)-generalized species, written F : A E−→ B,
consists of:

▶ for every permutation σ ∈ Sn, lists of morphisms ⟨f1, . . . , fn⟩ with
fi : ai → a′

σi in A and morphism g : b′ → b in B a function
satisfying some axioms
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σi in A and morphism g : b′ → b in B a function

satisfying some axioms

F (⟨a1, . . . , an⟩, b)
F ((σ, ⟨f1, . . . , fn⟩), g)

b

s

a1 an

F

. . .

7→

F (⟨a′
1, . . . , a′

n⟩, b′)

b

b′

F

(σ, ⟨f1, . . . , fn⟩)· s ·g

a′
1 a′

σ1 a′
σn a′

n

a1 an

g

f1 fn

. . .
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Generalized species of structure

generalized species = many-to-one operations

F

b

s

a1 an. . .

finite sequence of objects left action on inputs via
permutations and morphisms

in the input category

single object

right action on the
output via morphisms in

the output category
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Generalized species of structure

Fiore, “Mathematical Models of Computational and Combinatorial
Structures: (Invited Address)”, 2005.

Fiore, Gambino, Hyland, Winskel, “The cartesian closed bicategory
of generalised species of structures”, 2008

Earlier influences

▶ Joyal’s species and their relationship with operads

▶ Linear logic 80’s: Girard

▶ Concurrency 90’s: Cattani, Fiore, Moggi, Sangiorgi, Winskel
(π-calculus, process algebras)

▶ Abstract syntax 90’s: Fiore, Plotkin, Turi
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Generalized species as functors
▶ An (A, B)-generalized species F : A E−→ B is equivalently a functor

SA −→ B̂

SA × Bop −→ Set

free symmetric strict
monoidal completion

presheaves over B

The category SA:
▶ objects: ⟨a1, . . . , an⟩ finite sequences of objects of A

▶ morphisms ⟨a1, . . . , an⟩ → ⟨a′
1, . . . , a′

n⟩ are pairs (σ, ⟨f1, . . . , fn⟩) of a
permutation σ ∈ Sn and a finite sequence of morphisms
fi : ai → a′

σ(i) in A

n a1 . . . ai . . . an

n a′
1 . . . a′

σ(1) . . . a′
n

∼=σ
f1

fi
fn
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Example: species of sets

▶ Combinatorial species of sets

E : B → Set
A 7→ {⋆}

▶ Symmetric sequence of sets

E : P → Set
n 7→ {⋆}

▶ Generalized species of sets

EA,B : SA → B̂
(⟨a1, . . . , an⟩, b) 7→ {⋆}
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Example: singleton species
▶ Combinatorial species of singletons

X : B → Set

A 7→
®

A if |A| = 1
∅ otherwise

▶ Symmetric sequence of singletons
X : P → Set

n 7→
®

{⋆} if n = 1
∅ otherwise

▶ Generalized species of singletons

XA : SA → Â

(⟨a1, . . . , an⟩, a) 7→
®

A(a, a1) if n = 1
∅ otherwise
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Example: lists (linear orders)

▶ Combinatorial species of lists

L : B → Set
A 7→ {f : n ∼−→ A} (n := |A|)

▶ Symmetric sequence of lists

L : P → Set
n 7→ Sn

▶ Generalized species of lists

LA : SA → Â
(⟨a1, . . . , an⟩, a) 7→ SA(⟨a, . . . , a⟩︸ ︷︷ ︸

n times

, ⟨a1, . . . , an⟩)
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Operations on Generalized Species

▶ Sum of combinatorial species F , G : B → Set

F + G : B → Set
A 7→ F (A) ⊎ G(A)

▶ Sum of generalized species F , G : SA → B̂

F + G : SA → B̂
(⟨a1, . . . , an⟩, b) 7→ F (⟨a1, . . . , an⟩, b) ⊎ G(⟨a1, . . . , an⟩, b)
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Operations on Generalized Species

▶ Multiplication of combinatorial species F , G : B → Set

F · G : B → Set

A 7→
∑

C⊎D=A
F (C) × G(D)

▶ Day convolution product of generalized species F , G : SA → B̂

F · G : SA → B̂

(⟨a1, . . . , an⟩, b) 7→
c⃗,d⃗∈SA∫

SA(⃗c · d⃗ , ⟨a1, . . . , an⟩) × F (⃗c, b) × G(d⃗ , b)

We obtain the same fixed point formula for lists (linear orders)
LA ∼= 1A + XA · LA
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Composition of Generalized Species

▶ Composition (substitution) of combinatorial species F , G : B → Set

G ◦ F : B → Set

A 7→
∑

Π∈Part(A)

G(Π) ×
∏
P∈Π

F (P)

▶ Composition of generalized species F : SA → B̂ and G : SB → Ĉ
G ◦ F : SA → Ĉ

(⃗a, c) 7→

b⃗=⟨b1,...bn⟩∈SB,

p⃗1,...,⃗pn∈SA∫
G(b⃗, c) ×

n∏
i=1

F (p⃗i , bi) × SA(p⃗1 · · · · · p⃗n, a⃗)
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Composition of Generalized Species

(G ◦ F )(⃗a, c) =

b⃗=⟨b1,...bn⟩∈SB,
p⃗1,...,⃗pn∈SA∫

G(b⃗, c) ×
n∏

i=1
F (p⃗i , bi) × SA(p⃗1 · · · · · p⃗n, a⃗)

A (G ◦ F )(⃗a, c)-structure

is a quotient of elements of the shape:

c

G

b1 bn. . .

a1 am. . .

F

p1
1 pk1

1
. . .

F

p1
n pkn

n
. . .
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Bicategory of Generalized Species
Generalized species form a bicategory Esp:
▶ objects: small categories A, B, . . .

▶ 1-morphisms: generalized species F : SA → B̂

▶ 2-morphisms: natural transformations α : F ⇒ G : SA → B̂

F (⟨a1, . . . , an⟩, b)

b

s

a1 an. . .

F

α⟨a1,...,an⟩,b

7→

G(⟨a1, . . . , an⟩, b)

b

α⟨a1,...,an⟩,b(s)

a1 an

G

. . .

family of functions compatible with the left and right actions
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Generating series and analytic functors

▶ Recall, a combinatorial species induces a generating series

F : B → Set
∑
n≥0

|F (n)| xn

n!

▶ These series do not capture the action of F on bijections (e.g. the
species of lists and permutations have the same generating series)

▶ Analytic functors: notion of functorial series fully capturing the
behavior of species

Joyal, “Foncteurs analytiques et espèces de structures”, 2006

▶ Generalized analytic functors: analogue for generalized species

Fiore, “Analytic functors between presheaf categories over
groupoids”, 2014
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Implicit species theorem

Joyal, “Une théorie combinatoire des séries formelles”, 1981

Implicit species theorem: For a 2-sorted species H verifying

H(0, 0) = 0 and ∂H(X , Y )
∂Y (0, 0) = 0

then there exists a species (unique up to isomorphism) such that

H(F , id) ∼= F and F (0) = 0

Initial conditions exclude simples cases such as
▶ lists or linear orderings: L ∼= 1 + X × L

▶ binary rooted trees: B ∼= 1 + X × B2

We can weaken the initial conditions if we consider species F : B → Set
and not F : B → FinSet.
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Implicit species theorem and fixpoint operators

In generalized species, every implicit equation has a solution

▶ Given a 2-sorted species H : X × Y E−→ Y, a solution is a species
F : X E−→ Y such that

H ◦ ⟨F , idY⟩ ∼= F “H(F (Y ), Y ) = F (Y )′′

▶ We have a least fixpoint operator

fix : Esp(X × Y, Y) −→ Esp(X, Y)

and we can obtain uniqueness (up to unique isomorphism) via
uniformity.

▶ If we restrict to combinatorial species, fix computes the same
solution as the one in Joyal’s theorem.

G., “Fixpoint operators for 2-categorical structures”, 2023.
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There is more

We have seen so far that many constructions on Joyal’s
species can be generalized to category-colored species.

We will see now that the bicategory of generalized species has
also a deep connection to a long line of research on
quantitative denotational semantics and linear logic.
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Curry-Howard-Lambek correspondence

programming
languages

logic
category
theory

simply typed
λ-calculus

intuitionistic
logic

Cartesian
closed category

type A formula A object JAK

program
Γ ⊢ t : B

proof
π

Γ ⊢ B

morphism
JΓK → JBK

Soundness: invariance under program evaluation/proof rewritings

for any t t ′ we have JtK = Jt ′Kevaluation

for any
π

Γ ⊢ ∆
π′

Γ ⊢ ∆
we have JπK = Jπ′K

rewriting
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Quantitative semantics of linear logic
Girard (1980’s): from quantitative semantics ...
▶ Type A: vector space

▶ Program P : A ⇒ B: analytic map given by a power series

JPK(x) =
+∞∑
n=0

Pn · xn
• n: number of times P uses the

argument x
• Pn: weight

▶ Particular case: a program that uses its argument once corresponds
to a linear map

... to linear logic:

A ⇒ B = !A ⊸ B

intuitionistic implication linear implicationexponential
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Quantitative Semantics and Linear Logic

proof
nets

linear
logic

∗-autonomous category
+ extra structure

Linear logic and quantitative models to account for:
▶ resource usage (time and space)
▶ number of ways to obtain a result in a non-deterministic setting
▶ probability to obtain a result in a probabilistic setting

differential
proof nets

differential
linear logic

differential category
+ extra structure

Ehrhard, Regnier (2003):
▶ differential λ-calculus: notion of Taylor expansion for a program as

the sums of its nth linear approximants
▶ differential linear logic: logical account of differentiation
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Derivative of generalized species

Recall, for a species F : B → Set,

F ′(A) = F (A ⊎ {⋆})

Ñ∑
n≥0

fn
xn

n!

é′

=
∑
m≥0

fm+1
xm

m!

In models of differential logic, the idea is

smooth function f : Rn → Rm Jacobian J(f ) : Rn → Lin(Rn, Rm)

Definition
For a generalized species F : A E−→ B , its differential is the species:

D(F ) : A E−→ (A ⊸ B)
(⟨a1, . . . , an⟩, a, b) 7→ F (⟨a1, . . . , an⟩ · ⟨a⟩, b)
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Species as a bicategorical model of differential linear logic

The bicategory of generalized species is cartesian closed and is closely
related to the (weighted) relational model of differential linear logic

F

b

s

a1 an. . .

finite sequence of objects
in a category

species

single object

+ left/right actions

F

b

s

a1 an. . .

finite multiset of elements
of a set

multi-relations

single element

no action

Fiore, Gambino, Hyland, Winskel, “The cartesian closed bicategory of
generalised species of structures”, 2008

Fiore, Gambino, Hyland, “Monoidal bicategories, differential linear logic,
and analytic functors”, 2025
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Bicategorical semantics

Use 2-morphisms in a bicategory to model computation steps

bicategorycalculus

type/formula A object JAK

term/proof
π

Γ ⊢ ∆
1-morphism

JπK : JΓK −→ J∆K

π

Γ ⊢ ∆
π′

Γ ⊢ ∆

2-morphism

JΓK J∆K

JπK

Jπ′K

⇓computation

26/40



What are the research directions today?
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generalized
species

denotational
semantics

differential
linear logic
λ-calculus

game semantics

dualities

combinatorics

Joyal’s species
operads

type theory

intersection types
abstract syntax

2-dimensional
category theory

distributive laws

relative
pseudo-monads

∞-categories

opetopes

polynomial functors

formal languages

automata
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Bicategorical denotational semantics

Tsukada, Asada, Ong, “Generalised species of rigid resource terms”,
2017
Tsukada, Asada, Ong, “Species, profunctors and Taylor expansion
weighted by SMCC”, 2018

▶ Taylor expansion of a program is a species such that

M evaluation−−−−−−→ N ⇒ Taylor(M) isomorphism=======⇒ Taylor(N)

▶ Weighted generalized species: the weights form a symmetric
monoidal closed category and different weight categories induce
models for nondeterministic, probabilistic and quantum programs.
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Proof-relevant intersection types

▶ In intersection typing systems, typability is equivalent to termination
▶ There are many quantitative variants to characterize more refined

properties

relations species

JMK = {(Γ, A) | Γ ⊢ M : A}

M evaluation−−−−−−→ N ⇒ JMK = JNK

JMK(Γ, A) =




π
...

Γ ⊢ M : A

M evaluation−−−−−→ N ⇒ JMK iso==⇒ JNK

Olimpieri, “Intersection type distributors.”, 2021

Kerinec, Manzonetto, Olimpieri. “Why are proofs relevant in
proof-relevant models?”, 2023
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Generalized species and dualities

▶ Orthogonality categories: tool to refine a model based on a duality
between points an co-points while preserving the structure

G. “A bicategorical model for finite nondeterminism”, 2021

▶ Duality on the action of permutation to connect species and
polynomial functors (another categorical notion of series)

Fiore, G., Paquet, “A combinatorial approach to higher-order
structure for polynomial functors”, 2022

Also related to dualities in game semantics...
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Bicategorical game semantics

▶ Bicategorical game models are finer than species: they are
quantitative and also take into account the interactive behavior of
programs

▶ Study the relationship between the two models (in a compositional
way)

Clairambault, Olimpieri, Paquet, “From thin concurrent games to
generalized species of structures”, 2023

Clairambault, Forest, “An analysis of symmetry in quantitative
semantics”, 2024
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Species and operads

symmetric operads

May, 1972

monoids in symmetric
sequences with substitution

Kelly, 2005

set-colored
symmetric operads

Boardman, Vogt 1973

monoids in colored symmetric
sequences with substitution

?

category-colored
symmetric operads
Baez, Dolan 1997

internal monads in the bicategory
of generalized species

Fiore, Gambino, Hyland, Winskel 2008

+ generalizations to the enriched setting (cf. substitudes)
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Species, operads, monads and generalized multicategories

generalized species F : A E−→ B

monoids = symmetric operads

F

b

s

a1 an. . .

object of the free symmetric strict
monoidal completion 2-monad on A

left action on inputs via
permutations and morphisms

in the input category A

single object of B

right action on the
output via morphisms in
the output category B

34/40



Species, operads, monads and generalized multicategories

cartesian species F : A E−→ B

monoids = cartesian operads (clones)

F

b

s

a1 an. . .

object of the free cocartesian
completion 2-monad on A

left action on inputs via
functions and morphisms
in the input category A

single object of B

right action on the
output via morphisms in
the output category B
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Species, operads, monads and generalized multicategories

Two related approaches:
▶ Generalized multicategories: which 2-monads induce a nice notion of

multi-category (=colored operad)?

Cruttwell, Shulman, “A unified framework for generalized
multicategories”, 2009

▶ Monad distributive laws: which 2-monads interact nicely with
presheaves?

Fiore, Gambino, Hyland, Winskel, “Relative pseudomonads, Kleisli
bicategories, and substitution monoidal structures”, 2018

Hyland, Tasson, “The linear-non-linear substitution 2-monad”, 2020
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2-dimensional category theory

Generalized species were an important example for the development of
the theory of relative pseudomonads, strong and monoidal pseudomonads

Fiore, Gambino, Hyland, Winskel, “Relative pseudomonads, Kleisli
bicategories, and substitution monoidal structures”, 2018

Slattery, “Pseudocommutativity and lax idempotency for relative
pseudomonads”, 2023

Miranda, “Eilenberg-Moore bicategories for opmonoidal
pseudomonads”, 2024

Paquet, Saville, “Effectful semantics in bicategories: strong,
commutative, and concurrent pseudomonads”, 2024

Arkor, Saville, Slattery, “Bicategories of algebras for relative
pseudomonads”, 2025
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Homotopy theory, ∞-categories and opetopes

Kock, “Data types with symmetries and polynomial functors over
groupoids”, 2012

Fiore, “An Algebraic Combinatorial Approach to the Abstract Syntax
of Opetopic Structures”, 2016

Finster, Mimram, Lucas, Seiller, “A cartesian bicategory of
polynomial functors in homotopy type theory”, 2021

Gepner, Haugseng, Kock “∞-operads as analytic monads”, 2022

Harington, Mimram, “Polynomials in homotopy type theory as a
Kleisli category”, 2024
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Formal languages

Melliès, Zeilberger, “Parsing as a lifting problem and the
Chomsky-Schützenberger representation theorem”, 2022

Melliès, Zeilberger,“The categorical contours of the
Chomsky-Schützenberger representation theorem”, 2023

Loregian,“Automata and coalgebras in categories of species”, 2024
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Thank you
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